Coupled Acoustic-Mechanical Bandgaps
نویسندگان
چکیده
In this work, we study the existence of coupled bandgaps for corrugated plate structures and acoustic channels. The study is motivated by the observation that the performance of traditional bandgap structures, such as periodic plates, may be compromised due to the coupling to a surrounding acoustic medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode.
منابع مشابه
Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances
We explore the thesis that resonances in trees result in forests acting as locally resonant metamaterials for Rayleigh surface waves in the geophysics context. A geophysical experiment demonstrates that a Rayleigh wave, propagating in soft sedimentary soil at frequencies lower than 150 Hz, experiences strong attenuation, when interacting with a forest, over two separate large frequency bands. T...
متن کاملDesign of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab.
In this paper we study and design quasi-2D optomechanical crystals, waveguides, and resonant cavities formed from patterned slabs. Two-dimensional periodicity allows for in-plane pseudo-bandgaps in frequency where resonant optical and mechanical excitations localized to the slab are forbidden. By tailoring the unit cell geometry, we show that it is possible to have a slab crystal with simultane...
متن کاملSemiclassical Coupled Wave Theory for Bandgap Calculations in Periodically Stratified Dielectric Media
Photonic crystals are artificial low-loss either two-dimensional (2D) or three-dimensional (3D) dielectric structures with a periodic modulation of the refractive index. Due to Bragg reflection, electromagnetic (optical) waves cannot propagate through such structures in certain directions, at certain frequencies. Hence, photonic crystals can exhibit bandgaps (even omnidirectional bandgaps in ce...
متن کاملHarnessing Deformation to Switch On and Off the Propagation of Sound.
A new class of architected materials is designed to control the propagation of sound. The proposed system comprises an array of elastomeric helices in background air and is characterized by frequency ranges of strong wave attenuation (bandgaps) in the undeformed configuration. Upon axially stretching the helices, such bandgaps are suppressed, enabling the design of a new class of acoustic switch.
متن کاملCompact acoustic bandgap material based on a subwavelength collection of detuned Helmholtz resonators
This study explores the amplitude and phase transmission of audio-frequency sound through a waveguide side-loaded with a series of closely spaced and sequentially tuned Helmholtz resonators. This system exhibits a series of acoustic bandgaps due to the Helmholtz resonance and standing-wave cavity modes. The bandgaps are achieved in a physically compact manner in that the resonators are spaced b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016